

Patient Centric Approach for Run Acceptance Criteria in Large Targeted Metabolomics Panels

Sally Abou-Zeki, Pamela Dartnall, Melissa J. Bennett, Ahmed Najar, George Gillson

Overview:

Purpose: Develop a fast and patient centered approach to approve batch run for a panel of 31 steroids in a clinical lab setting

Methods: Intra-batch acceptance was based on a pooled sample from the same patients run on that day

Inter-batch acceptance was based on four samples (pool and lyophilized)

For both intra- and inter-batch validation, principal component analysis (PCA) was used along with D-Ratio (a variance based metric)

Results: PCA and D-Ratio provided a fast and quantifiable way to pinpoint issue- compounds

This approach does not account for the positive or negative bias like Westgard rules do. We suggest a combination of Westgard and PCA for batch acceptance

Introduction:

• As the need for large diagnostic panels in clinical chemistry rises, the use of Westgard rules is causing the failure of batches that could otherwise pass.

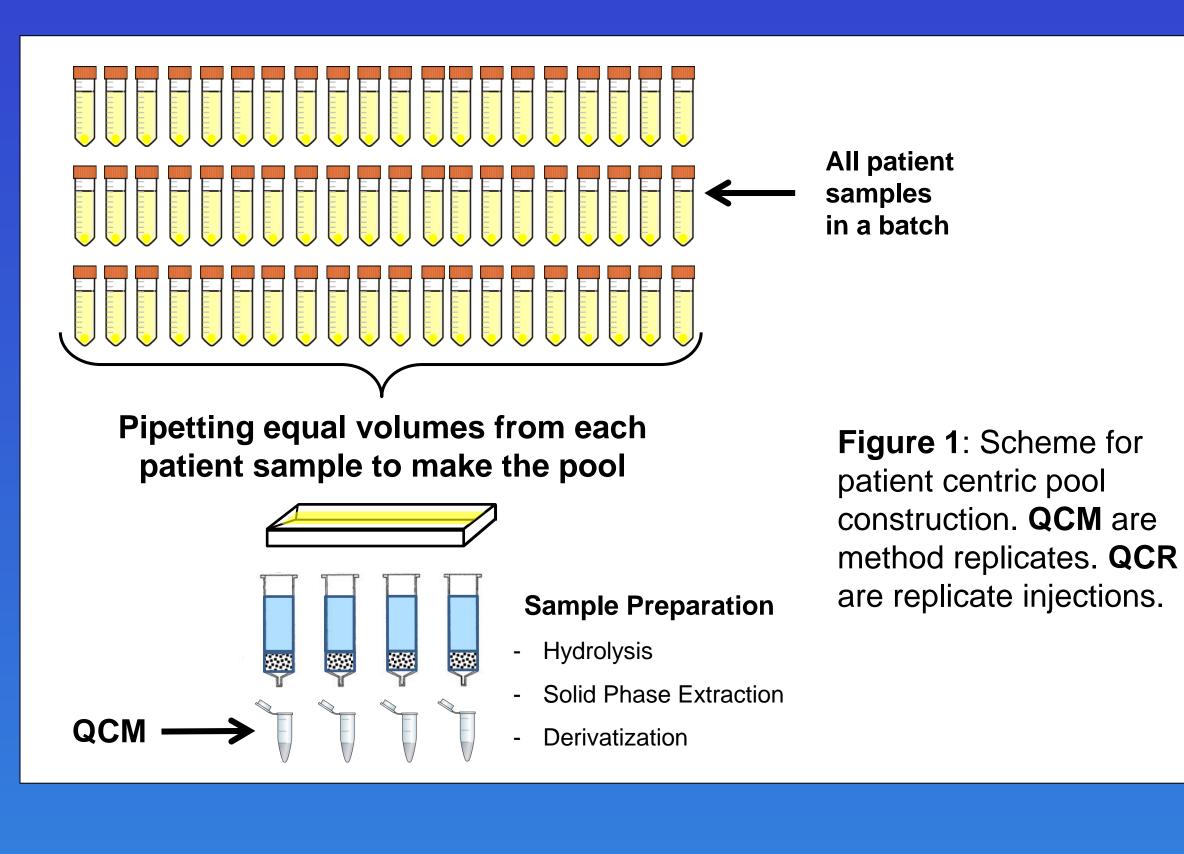
• Lyophilized Certified Reference Material and spiked matrices do not account for patient matrix and rarely contain all endogenous compounds. The FDA guidelines for bioanalytical method development and validation¹ proposes a patient centric approach that should account for these limitations.

• Run acceptance has two elements in the clinical practice: (1) intrabatch to monitor preparation and instrument stability and (2) interbatch to insure results from day to day are consistent.

• We propose a method to quickly assess run acceptance of a large panel of steroid metabolites.

Methods:

Constructed pools


Intraday pools: From the same patient samples run in the batch, equal volumes from every patient sample were pipetted and mixed in a polypropylene reservoir. From that pool, 4 samples were processed as individual samples. The 4 replicates account for user variation as the method requires several steps (Figure 1). Those 4 replicates will be referred to as QCM since their variance translates the reproducibility of the sample preparation. These 4 samples are injected multiple times throughout the batch (total 12 injections) in order to monitor instrumental variability. The replicate injections from the 4 QCM are referred to as QCR (repeats of the QCM). The intrabatch validation data is not shown here.

Inter-day pools: a total of 4 QC samples were used:

- Two are lyophilized (1) Bio-Rad Lyphocheck L-1 (Montreal, QC) and (2) SKML SRM (Nijmegen, Netherlands).
- Two were pooled from a pregnant female (for estimable amounts of estrogens) and a male below 30 years old at different ratios. We labeled them as CHI and CHI2 (CHI: Comprehensive Hormone Insights®).
- The present work reports data from 10 batches run over a month.

Sample Preparation

We use an original in-house sample processing method consisting of an enzymatic hydrolysis (β -glucuronidase/arylsulfatase from *Helix pomatia*) in order to convert the glucuronide and sulfate conjugates to their unconjugated steroid unit. The samples are cleaned using polymeric solid phase extraction followed by a derivatization using Nmethyl-N-(trimethylsilyl)-trifluoroacetamide. Rocky Mountain Analytical Division of LifeLabs LP, Calgary, Alberta, Canada

Methods continued:

GC-MS/MS analysis

Urine steroid analysis using gas chromatography is the gold standard in clinical chemistry particularly for a large panel with different ionization requirements in a LC-MS/MS setting.

Instrumentation

- Agilent 7890B Gas Chromatogram
- Agilent 7000D Triple Quadrupole
- Column VF-200ms

• 7000D was used in dynamic MRM mode and unique transitions were used for mass separation of co-eluting compounds

- Representative compounds from and rogens, corticoids, estrogens and β -pregnanediol were analyzed

Analytics

PCA was performed using the vegan package in R. D-ratio, a measure from untargeted metabolomics QC² provides an estimate of instrumental variance relative to biological variance.

$$D - ratio = \frac{\sigma_{technical}}{\sqrt{\sigma_{samples}^{2} + \sigma_{techniqual}^{2}}} \times 100$$

Where:

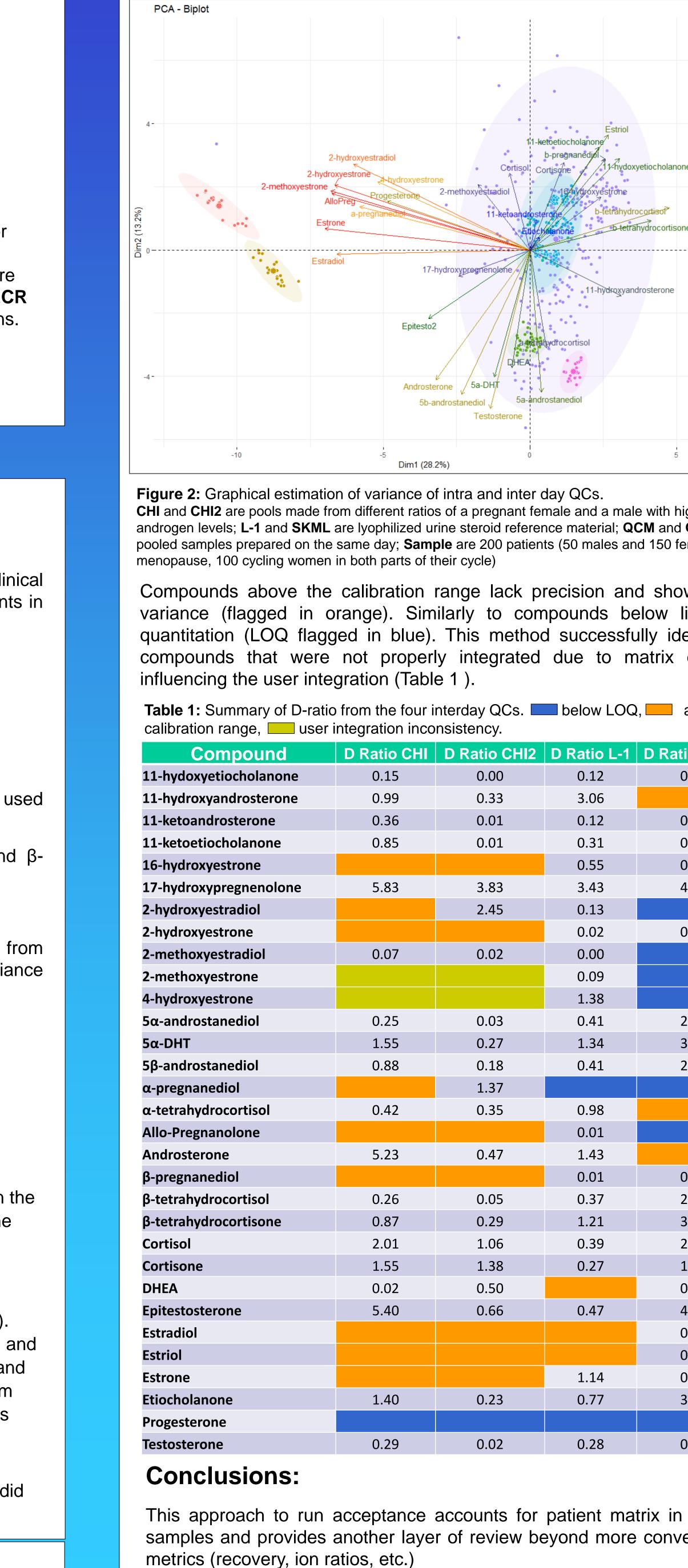
 $\sigma_{technical} = variance of pooled QC both QCM and QCR$

 $\sigma_{samples} = variance of patient samples$

If D-ratio $\leq 5\%$ then the technical variation is negligible, if D-ratio = 100 then the biological variation is negligible (not likely and triggers an investigation of the issue).

Results:

Graphic assessment shows decent clustering of all QC samples (Figure 2). The ellipses represent the 95% confidence interval, which is wider for QCM and QCR since the samples vary from day to day. The perfect overlap of QCM and QCR shows instrument stability over a month worth of runs. The D-ratio from QCM and QCR is assessed on a daily basis and showed satisfactory results (data not shown).


Inter-day assessment of method stability using QC values shows good clustering and D-ratio values that meet the specification (<5%). Cases that did not meet the D-ratio specifications were flagged and investigated.

References: U.S. Department of Health and Human Services Food and Drug Administration

⁴ U.S. Department of Health and Human Services Food and Drug Administration (2018). Bioanalytical Method Validation Guidance for Industry (https://www.fda.gov/media/70858/download), ² Broadhurst , D. et al. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14:72.

Ahmed.Najar@lifelabs.

DS®
ne Groups CHI CHI CHI CHI CHI CHI CHI CHI
igh QCR are emales: 50 w high limit of
entified effects
above <mark>io SKML</mark> 0.40
0.47
D.34 D.01
4.69
0.28
2.87 3.25
2.32
0.03 2.97
3.83 2.79
1.82
D.31 4.85
D.23 D.21
0.38
3.07
0.23
clinical entional