Is there an SOP for this? Using Simulation to Assess the Implementation of a Laboratory Information System in Medical Laboratory Science Education

Denise Alano, Lisa Purdy, Amanda VanSpronsen, Roberta Martindale, Rachel McKellar, Valentin Villatoro
Division of Medical Laboratory Science, Faculty of Medicine and Dentistry, University of Alberta

Introduction
- Laboratory Information System (LIS) software is used to record, manage, and store clinical information.
- LIS competency is necessary for medical laboratory technologists as it is involved in nearly every step of the laboratory workflow.
- The Division of Medical Laboratory Science (MLS) at the University of Alberta developed and implemented several simulation scenarios for the first-year student curriculum that incorporated various functions of an LIS.

Research Question: How effective is simulation for practice and application of LIS and other transferrable skills?

Objectives
- Creation and implementation of several moderate-to-high fidelity simulation scenarios
- Development of rubrics to monitor student performance and simulation effectiveness

Simulation Scenarios
- Pre-brief
- Scenario
- Debrief

Learning Objectives:
- Practice and become familiar with basic LIS functions
- Follow instructions in SOP manuals efficiently and effectively
- Demonstrate effective communication skills
- Practice appropriate data and specimen handing and processing
- Manage and share workload with team members

Required Tasks:
- Data entry of laboratory testing orders
- Manual results entry and reporting

Potential Distractions:
- Case #1: Cancelling an insufficient sample
- Case #2: Cancelling a physician’s test order
- Case #3: Checking previous order for a unit phone-in

Evaluation Tools
- MLS-LIS Simulation Rubric
 - Facilitator evaluation of students’ specific skills, behaviors, and overall simulation performance
 - Included various LIS functionalities, SOP use, communication, safe work practices, professionalism, and critical-thinking
 - Based on LIS SOPs and general CSM/LS competencies
- MLS Simulation Thinking Category
 - Assigned based on student’s cognitive approach to the scenario
 - Four categories: sensorimotor, preoperational, concrete, and formal
- MLS Simulation Evaluation Survey
 - Student evaluation of the simulation design and process
 - Covered pre-brief, scenario, debrief, and overall simulation
 - Agreement based on a 5-point Likert scale

Student Performance
- LIS competency:
 - 74% successful data entry
 - 84% successful results entry
- Students struggled with accessing and documentation
- SOP Use:
 - 76% efficient use
 - 88% accurate use
 - First-time exposure to multiple SOPs without assistance

Communication and Teamwork:
- 94% effective communication with peers
- Lack of proper phone etiquette
- Professionalism and Safety:
 - 92% proper safety measures
- Students frequently and consistently performed clerical checks
- Need for further practice with task prioritization

Simulation Thinking Category
- Concrete
 - 24.0% (6/25 students)
- Preoperational
 - 55.6% (15/25 students)

Simulation Design
- Scenario Design:
 - 96% felt simulations were realistic and relevant to the clinical lab
- Skill Practice:
 - 99% were able to practice troubleshooting, technical, critical-thinking, and other transferrable skills
- Teamwork:
 - 88% perceived effective teamwork in their group
- Student comment:
 - “Understanding the laboratory workflow in terms of communication, efficiency, and work order”

Areas for Improvement:
- Adequacy of resources
- Length of scenario

Discussion
- Student performance reflected the limited prior clinical exposure of these early learners
- Findings justify the training the students are receiving in the program and opportunities for improvement
- Simulation provides an opportunity for practice technical and relevant transferrable skills
- Changes to timing of curriculum are needed to enhance students’ simulation experience

Limitations
- Minimal clinical experience of first-year MLS students limited complexity of scenarios
- Need for standardization and validation of simulation scenarios and evaluation tools to allow for comparison between simulations

Conclusion
- Simulation in an MLS program is an effective way for students to practice LIS and other transferrable skills
- Early use of evaluation tools can help monitor student progress in the program

Future Directions
- Continuous use and refinement of scenarios and evaluation tools
- Advanced LIS simulations for year two students
- Incorporation of LIS into existing MLS simulations
- Earlier professional communication sessions in the MLS curriculum

Acknowledgements
- Funding provided by the Teaching and Learning Fund
- MLS Classes of 2019 & 2021